
AFRL-IF-WP-TM-2003-1501

AN OPEN LOGICAL PROGRAMMING
ENVIRONMENT
A Practical Framework for Sharing Formal
Models

Robert L. Constable
Christoph Kreitz

Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853

DECEMBER 2002

Final Report for 01 February 1998 – 31 December 2002

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

Approved for public release; distribution is unlimited.

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED
IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT
PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE
FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS,
SPECIFICA nONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY
OTHER PERSON OR CORPORATION; OR CONVEY AND RIGHTS OR PERMISSION TO
MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MA Y RELATE
TO THEM.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASC/PA)
AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE
(NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING
FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS
PUBLICA nON.

BEEN REVIEWED AND IS APPROVED FOR

CI'Y-z: .

;;;:!! ~ s"imo
Team Leader
Advanced Architecture &;
Integration Branch

~~..c, ~ a~:z:~o4..c,"";" -
DAVIDA. ZANN. Chief
Advanced Architecture & Integration Branch
Information Systems Division

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR
NOTICE ON A SPECIFIC DOCUMENT.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

December 2002 Final 02/01/1998 – 12/31/2002
5a. CONTRACT NUMBER

F30602-98-2-0198
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

AN OPEN LOGICAL PROGRAMMING ENVIRONMENT
A Practical Framework for Sharing Formal Models

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER

G356
5e. TASK NUMBER

01

6. AUTHOR(S)

Robert L. Constable
Christoph Kreitz

5f. WORK UNIT NUMBER

 01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION

 REPORT NUMBER

Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853

Defense Advanced Research Projects Agency
Information Technology Office
3701 North Fairfax Drive
Arlington, VA 22209-2308

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)
AFRL/IFSC

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7334

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)
AFRL-IF-WP-TM-2003-1501

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This grant was partly funded under BAA #00-23, PROGRAM COMPOSITION FOR EMBEDDED SYSTEMS (PCES) by
DARPA/ITO.
14. ABSTRACT (Maximum 200 Words)

The project has designed, built and tested a prototype system called a Logical Programming Environment (LPE), which provides the
means to formally specify, design, verify, and optimize distributed embedded systems.

The LPE has been used in increasingly complex applications, ranging from automatic code improvements for the Ensemble group
communication system to the formal design of adaptive network systems and the automatic generation of coordinated contracts for
BBN's Unmanned Aerial Vehicle (UAV) application. In each case, using the LPE has led to significantly increased assurance,
flexibility, or efficiency of the application.

In the process, substantial extensions to the LPE's logical foundations and its automated reasoning capabilities were made, thus
increasing its ability to contribute to the design and implementation of reliable, re-usable, re-configurable, correct, and efficient
distributed embedded systems.

15. SUBJECT TERMS

Formal verification, optimization, design, Dynamic embedded systems
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

14 Ronald Szkody
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-4709 x3165
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

 1

An Open Logical Programming Environment:
A Practical Framework for Sharing Formal Models

Cornell University

Final Report, December 2002

Objective

Commercial networking software is too unreliable and too insecure to be used in critical
applications, especially in the military. This concern has been elevated to a national priority by
the Presidential Commission on Critical Infrastructure Protection and by the President's
Information Technology Advisory Committee (PITAC). The main project goal was to create
highly innovative techniques and systems that can be integrated into the software development
process to substantially improve reliability and durability of the results. We have demonstrated
the applicability of our contributions on networking software, specifically on computing networks
such as BBN's UAV and Boeing's BoldStroke applications.

Approach

The project has designed, built and tested a prototype system called a Logical Programming
Environment (LPE). The LPE provides the means to formally specify and check properties of
system design and code as it is being developed, as well as to verify and optimize code that has
already been written.

The task of formally checking properties of code is organized in the LPE as an extension of static
type checking. The type checker is enhanced by a theorem prover. Some properties depend upon
a great deal of knowledge about a particular system architecture, such as event channels and event
notification services, as well as upon general mathematical knowledge about common data
structures and mathematical types. Much of the general mathematical knowledge has been
formally proved by several theorem-proving systems. The LPE is designed so that this general
knowledge can be shared; sharing is achieved by providing access to the libraries of various
theorem provers through an LPE component called a Formal Digital Library.

 The specific approach of this project proceeded simultaneously on three major areas.

• First, the logical language of the LPE was used to build formal models of networked
embedded systems as well as formally verified knowledge and tailored analysis
strategies.

• Second, the LPE was used to specify dynamic embedded systems by composition of
services and to generate re-usable, re-configurable, correct, and reliable code for them,
thus increasing the assurance, flexibility, and efficiency of key applications. After 2000
this was focused especially on the DARPA OEP.

• Finally, the capabilities of the LPE were continuously enhanced by extending its logical
language and by integrating new automatic reasoning techniques that support the
verification of embedded networked systems as well as reasoning about program
composition, property-preserving code transformations, and real-time aspects.

 2

Accomplishments

In the course of the project we have successfully applied the Logical Programming Environment
in increasingly complex applications, ranging from formal support for the Ensemble group
communication system to the automatic generation of coordinated contracts for BBN's Unmanned
Aerial Vehicle (UAV) Open Experimental Platform (OEP) and an interface between this OEP
and the Logical Programming Environment. Early in the process there were significant
extensions to the LPE's logical foundations and its automated reasoning capabilities.

The following gives a comprehensive summary of the specific accomplishments. An extensive
account of the research results is given in the publications of the research team, which are listed
below and referred to in the text.

Optimization and Verification of Communication Systems

Using the first prototype of the LPE, we have developed fully automatic tools for improving the
code of the Ensemble group communication system [2,5,7,9,30]. The improved code operates
three to ten times faster than the original and is generated in a matter of seconds. Comparable
improvements done by hand took months of tedious and complex work on smaller examples, and
the complexity led to errors in the faster code. In contrast, the code modifications created by the
automatic tools are guaranteed to be correct, that is, the improved code computes the exact same
results as the original.

We have rigorously proved safety properties of the total ordering layer of Ensemble (ETO) using
IO automata, and we used the proof to guide correction of a subtle error in that layer [6,8]. The
proof also led to the proper repair of the error.

Formal Design of Adaptive Systems

We have designed a generic switching protocol for the construction of adaptive network systems
[16] and formally proved it correct with the Logical Programming Environment [17,20,21]. In the
process we have developed a formal characterization of communication properties that can be
preserved when the system switches between different protocols. We have also developed an
abstract characterization of invariants that have to be satisfied by an implementation of the
switching protocol in order to work correctly.

As foundation for this work we have introduced the novel concept of meta-properties. Meta-
properties make it possible to give an abstract characterization of "switchable" system properties,
which in turn makes it easier to check whether a specific set of protocols can be employed in an
adaptive system. We have described switchable properties in terms of several meta-properties
such as "safety", "asynchrony", "delayable", and "send-enabled", as well as "composability" and
"memorylessness". The first four of these properties are required for any layered communication
system while the latter are necessary for switching. The abstract approach represents a major
increase in our formal understanding of distributed systems and makes it possible to support the
formal analysis and design of networked systems, including those dealing with real-time and
embedded systems

 3

With the LPE we have formally proven that communication properties that satisfy these six meta-
properties are preserved under switching, whenever the switch maintains a simple
synchronization invariant. The verification efforts revealed a variety of implicit assumptions that
are usually made when designing communication systems and uncovered minor design errors that
would have otherwise made their way into the implementation. This demonstrates that formal
reasoning about group communication in an expressive theorem proving environment such as the
Logical Programming Environment can contribute to the design and implementation of verifiably
correct network software.

We have evaluated the performance implications of using our hybrid protocol by switching
between two well-known mechanisms for implementing total order and shown that switching
close to the cross-over point of these protocols`s performance leads to the best practical results.

Knowledge-based Generation of Coordinated Contracts

We have developed and implemented a prototype of MediaNet [25], a general infrastructure for
real-time network computations. MediaNet generalizes the computing network underlying both
BBN's UAV applications and parts of Boeing's BoldStroke architecture.

In this setting we have developed a self-adaptive task allocation manager that controls the
processing of real-time media over a network through coordinated local schedules. It is able to
adapt, in user-specified ways, to changing workloads and network conditions, attempting to
deliver specified quality of service and to meet other specifications. The task allocation manager
assigns, based on current resource availability, computing and communication tasks to each node
of the network in a way that maximizes a combination of user utility and network utilization.
This functionality has been demonstrated in a configuration where we throttle network bandwidth
and show how the system adapts between different compression schemes in order to maintain a
smooth video transport. It can serve as Resource Allocation Manager for the BBN's UAV system
and also provides a setting for formal reasoning about aspect-oriented design and code assembly.

Building upon the abovementioned work on specifying, verifying, and formally designing
communication protocols, we have developed a formal model of networked stream computations
that allows us to incorporate both real-time constraints and resource limitations into our
specifications. The model makes it possible to reason about safety and liveness properties and
about self-adaptation wrt. different schedules and changing data formats. It also makes it possible
to factor UAV computations into aspects, including functional requirements, QoS requirements
and security requirements. We can also weave fault tolerant communications into the distribution
of operations on the underlying computing network.

Within the Logical Programming Environment we have, using the above formal model,
developed an algorithm that derives coordinated local schedules and quality of service contracts
from a global schedule. The algorithm approximates the behavior of the global scheduler with a
distributed collection of local schedulers, one for each network node. A local scheduler assigns
tasks to its node based only on its observation of the bandwith of its output links, its cpu
resources, and information, called "tags", passed to it by its predecessor nodes.

To generate the local schedulers, we use the MediaNet global scheduler as an offline "black box".
The key idea of the algorithm is to use the logical form of the user specifications to create the set
of tags. The tags correspond to all the subterms of the user specs. Proceeding in topologically
sorted order, at each node we know the combinations of tags produced by the predecessor nodes.
For each combination of tags we can compute a new user specification that replaces the subterms

 4

corresponding to the tags by the input streams of the node. Using this new specification we call
the global scheduler with varying bandwith parameters and tabulate the tasks that it assigns to the
current node. In this part of the algorithm we use a machine learning method called "support
vector machines". In this way we create a table of tasks to assign to the current node as a
function of the input tags and the output bandwidths, and this is the specification of the local
scheduler.

Integration into Open Experimental Platforms

To support formal reasoning about media computing networks such as MediaNet and BBN's
UAV applications we have implemented an XML interface for our LPE. It makes it possible to
automatically import XML specifications generated by the MediaNet scheduler or by Vanderbilt's
graphical modeling (GME) tools into our LPE and to formally analyze the actual code of
MediaNet and the XML representation of BBN's UAV provided by Vanderbilt's GME.

We have developed prototypical techniques for translating the schedules generated by the LPE
and MediaNet into a representation suitable for the GME and used them to automatically create
coordinated CDL contracts. Ongoing contacts with Vanderbilt and BBN will enable us to refine
these techniques such that the generated CDL contracts can be automatically deployed to BBN's
UAV network.

Logical Foundations

We have developed a formal class theory that provides a logical foundation for design and
verification through composition and weaving [15,27,29]. The theory provides the logical laws of
records, modules, subtyping, and objects as well as operations for composing modules and
properties. Our formal intersection operator can be used to express both functional composition
and aspect weaving, and is guaranteed to combine all safety properties of the composed code
pieces. Class theory is therefore well-suited as logical foundation for compositional design and
verification.

We also have developed a theoretical basis for an efficient logical reflection mechanism [28]. It
will enable the LPE to analyze intensional properties of systems such as the computational
complexity [18,22,23] of generated software, as well as timing, use of resources, or
synchronization.

Tools for Automated Reasoning and Formal Documentation

We have significantly enhanced the automatic reasoning tools of the LPE by adding generic proof
techniques that support the verification of networked systems and their implementations and
proof strategies especially tailored towards reasoning about program composition, aspect
weaving, and embedded systems. Substantial new reasoning capabilities are now in place.

We have integrated JProver [3,12,13,19], a fully automated theorem prover for constructive first-
order logic, as an external proof engine into the LPE. JProver operates on matrices and
connections, a very compact representation of the search space that substantially reduces the time
needed for finding proofs. Extensions of Jprover towards inductive theorem proving have in
explored in theory [1,4,11,24] and are currently being added to the theorem prover.

 5

We have introduced new techniques for asynchronous and parallel theorem proving [10,26], and
are currently adding strategies that utilize external proof systems such as PVS and MetaPRL [14]
as well as constraint solvers and computer algebra systems.

We have implemented tools that enable the verification system to learn from the work have
already done by "mining" proofs for reasoning steps that can be reused as "derived inference
rules".

We have developed mechanisms for the creation of formal documentation in the LPE.
Documentation with references to the actual LPE proofs are now part of the persistent LPE
library and thus accessible to search and dependency tracking mechanisms. They can be viewed
online or converted into a typeset version for publication.

The use of these techniques has significantly increased the degree of automation in formal design
and verification and will increase the productivity of rigorous design methods.

Publications

1. B. Pientka and C. Kreitz. Instantiation of Existentially Quantified Variables in Inductive
Specification Proofs, 4th International Conference on Artificial Intelligence and
Symbolic Computation, LNAI 1476, pp. 247-258, Springer, 1998.

2. C. Kreitz, M. Hayden, J. Hickey. A Proof Environment for the Development of Group

Communication Systems, 15th International Conference on Automated Deduction,
LNAI 1421, pp. 317-332, Springer, 1998.

3. C. Kreitz and J. Otten. Connection-based Theorem Proving in Classical and Non-

classical Logics, Journal for Universal Computer Science 5(3):88-112, Springer-Verlag,
1999.

4. B. Pientka and C. Kreitz. Automating inductive Specification Proofs, Fundamenta

Informatica 39(1-2):189-209, 1999.

5. C. Kreitz. Automated Fast-Track Reconfiguration of Group Communication Systems,

5th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 1579, pp. 104-118, Springer, 1999.

6. J. Hickey, N. Lynch, and R. van Renesse. Specifications and proofs for Ensemble layers.

5th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 1579, pp. 119-133, Springer, 1999.

7. X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman, R. Constable.

Building Reliable, High-Performance Systems from Components, 17th ACM Symposium
on Operating System Principles (SOSP'99), Operating Systems Review 34(5):80-92,
1999.

8. Mark Bickford and Jason Hickey. Predicate transformers for infinite-state automata in

Nuprl type theory. In Irish Formal Methods Workshop, 1999.

 6

9. K. Birman, B. Constable, M. Hayden, J. Hickey, C. Kreitz, R. van Renesse, O. Rodeh, W.
Vogels. The Horus and Ensemble Projects: Accomplishments and Limitations. DARPA
Information Survivability Conference and Exposition (DISCEX 2000), Hilton Head, SC,
pp. 149-160, IEEE Computer Society Press, 2000.

10. S. Allen, R. Constable, R. Eaton, C. Kreitz, L. Lorigo. The Nuprl Open Logical

Environment, 17th International Conference on Automated Deduction, LNAI 1831, pp.
170-176, Springer, 2000.

11. C. Kreitz, & B. Pientka. Matrix-based Inductive Theorem Proving, International

Conference TABLEAUX-2000, LNAI 1847, pp. 294-308, Springer, 2000.

12. C. Kreitz, J. Otten, S. Schmitt, B. Pientka. Matrix-based Constructive Theorem Proving.
In Intellectics and Computational Logic. Papers in honor of Wolfgang Bibel, pp. 189-
205, Kluwer, 2000.

13. C. Kreitz and S. Schmitt. A Uniform Procedure for Converting Matrix Proofs into

Sequent-Style Systems, Journal of Information and Computation 162(1-2):226-254,
2000.

14. J. Hickey and A. Nogin. Fast Tactic -based Theorem Proving. 13th International

Conference TPHOLs 2000. Lecture Notes in Computer Science 1869, pp. 252-266,
Springer Verlag, 2000.

15. R. Constable and J. Hickey. Nuprl's Class Theory and its Applications. Foundations of

Secure Computation, NATO ASI Series, Series F: Computer & System Sciences, pages
91-116. IOS Press, 2000.

16. X. Liu, R. van Renesse, M. Bickford, C. Kreitz, R. Constable. Protocol Switching:

Exploiting Meta-Properties, International Workshop on Applied Reliable Group
Communication (WARGC 2001), pp. 37-42. IEEE CS Press, 2001.

17. M. Bickford, C. Kreitz, R. van Renesse, X. Liu. Proving Hybrid Protocols Correct,

Technical Report, Cornell University, Ithaca, NY, February 2001.

18. R. Benzinger. Automated Complexity Analysis of Nuprl Extracted Programs. Journal of
Functional Programming 11(1):3-31, 2001

19. S. Schmitt, L. Lorigo, C. Kreitz, A. Nogin. JProver: Integrating Connection-based

Theorem Proving into Interactive Proof Assistants, Internationa l Joint Conference on
Automated Reasoning, LNAI 2083, pp. 421-426, Springer Verlag, 2001.

20. M. Bickford, C. Kreitz, R. van Renesse, R. Constable. An Experiment in Formal Design

using Meta-Properties, DARPA Information Survivability Conference and Exposition II
(DISCEX 2001), pp. 100-107, IEEE Computer Society Press, 2001.

21. M. Bickford, C. Kreitz, R. van Renesse, X. Liu. Proving Hybrid Protocols Correct, 14th

International Conference on Theorem Proving in Higher Order Logics, LNCS 2152, pp.
105-120,, Springer Verlag, 2001.

 7

22. R. Constable and K. Crary. Computational complexity and induction for artial
computable functions in type theory. Reflections on the Foundations of Mathematics:
Essays in Honor of Solomon Feferman, Lecture Notes in Logic, pp 166-183. Association
for Symbolic Logic, 2001.

23. A. Nogin. Writing Constructive Proofs Yielding Efficient Extracted Programs. Electronic

Notes in Theoretical Computer Science 37, 2001.

24. C. Kreitz, & B. Pientka.Connection-based Inductive Theorem Proving, Studia Logica
69(2):293-326, 2001.

25. M. Hicks, R. van Renesse, M. Bickford, R. Constable, C. Kreitz, L. Lorigo. User-specific

Adaptive Scheduling in a Streaming Media Network, Technical Report, Cornell
University, Ithaca, NY, 2002.

26. S. Allen, M. Bickford, R. Constable, R. Eaton, C. Kreitz, L. Lorigo. FDL: A Prototype

Formal Digital Library, Technical Report, Cornell University, Ithaca, NY, 2002.

27. A. Kopylov. Representation of object calculus in type theory, Technical Report, Cornell
University, Ithaca, NY, 2002.

28. E. Barzilay and S. Allen. Reflecting Higher-Order Abstract Syntax in Nuprl.15th

International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2002),
pp. 23-32, NASA, 2002.

29. R. Constable. Naive Computational Type Theory. Proof and System-Reliability, NATO

Science Series III, pp 213-260, 2002.

30. C. Kreitz. Building Reliable, High-Performance Networks with the Nuprl Proof
Development System, Journal of Functional Programming, 2003 (to appear).

